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The symmetry-adapted-cluster (SAC) and SAC-configuration interaction (SAC-CI) many-body theories have
been applied to calculate, within the all-electron ab initio Hamiltonian, the singlet ground and excited states
of MoF6 and MoOF4. Chemical bonding and electron correlation are quite important to reduce the formal
charge of electrostatic Mo-ligand bonds in both ground and excited states. The calculated excited states are
all characterized as electron-transfer excitations from ligands to molybdenum, reducing the ionicity of the
Mo-F bonds. For MoF6, we assign the energetically lower three peaks to dipole-allowed electronic transitions
to the1T1u excited states, consistently with the calculated oscillator strengths, and at variance of the previously
proposed assignments. The fourth and fifth peaks, having very weak intensity, have been tentatively assigned
to the dipole-forbidden 21Eg and 41T2g excited states, respectively. The experimental excitation energies and
intensities are well reproduced by the present calculations. The maximum discrepancy (0.35 eV) of the
calculated excitation energies occurs for the first peak. Chemical bondings of MoOF4 in the ground and
excited states, although exhibiting great reductions of the ionicity, are more ionic than those of MoF6. For
the visible-UV spectrum of MoOF4, we assign the two experimental peaks to dipole-allowed transitions to
the 1E excited states. The present assignments of the observed electronic transitions based on the accurate
SAC-CI calculations should be more reliable than the previous ones. We further used the frozen-orbital-
analysis (FZOA) method in order to understand and rationalize the energy orderings and splittings for the
excited states having the same excitation nature. We confirm that the FZOA method is very simple and
useful to examine and explain the origin of the orderings of the excitation levels. Some relationships on the
orderings and splittings presented here should be of general applicability to any systems.

I. Introduction

Octahedral molybdenum hexafluoride MoF6, one of the most
effective fluorinating and oxidizing agents, has an extraordinary
high (5-7 eV) electron affinity (EA). The valence ionization
potentials (IPs) have been investigated by photoelectron spec-
troscopy (PES)1 and subsequent theoretical studies within the
XR-type methods.2,3 Ordering and assignment of the PES peaks
have been understood on the qualitative level.2,3 We have
recently shown that within the all-electron ab-initio Hamiltonian,
electron-correlation effects are quite important even for a
qualitative description of the valence ionized states of MoF6.4

The electron correlation was also shown to be extremely
important for calculating the EA.5

The electronic structures of MoF6 in the excited states have
been early investigated by visible-UV absorption spectroscopy6

and thereafter by semiempirical XR-based methods.2,5 For the
experimentally observed five bands of MoF6, ranging from 6
to 11 eV, two different assignments have been proposed. Both
assignments, which are based on ligand-field theory6 and on
semiempirical MO method,2 leave room for criticism and
questions.

MoOF4 is obtained by oxidation of MoF6 using MoO3. This
molecule also possesses a high EA. In its crystalline state, the
MoOF4 molecule forms a chain structure7 that has not been
noticed for MoF6. The excited states have been investigated
by visible-UV absorption spectroscopy and the XR calcula-
tions.8 Other theoretical studies on MoOF4 by Sosa et al.,9 by
Neuhause et al.,10 and by Benson et al.11 have mainly focused
on the ground state using the density functional, MP2, and SCF
methods, respectively. However, similar to MoF6, there have
so far been no ab initio theoretical studies on the excited states
of MoOF4.

In the present investigation, we have calculated both excitation
energies and oscillator strengths for the singlet excited states
of MoF6 and MoOF4 by the symmetry-adapted-cluster (SAC)
and SAC-configuration interaction (SAC-CI)12,13 methods, of
which the accuracy and reliability have been tested by numerous
applications to diverse organic and inorganic systems (for a
recent review, see ref 14). We have tried to perform assign-
ments of the experimentally observed electronic peaks for MoF6

and MoOF4 by using the SAC-CI results of both calculated
excitation energies and corresponding oscillator strengths.

Since MoF6 has a high symmetry (Oh), most of the excited
states are dipole-forbidden. It is therefore difficult to observe
all the excited states of MoF6 by the usual one-photon
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experiment. Assignments, moreover, are not easy because of
the very weak intensities and partially overlapping bands. The
present SAC-CI calculations have yielded both allowed and
forbidden excited states up to about 11 eV, which are further
analyzed in order to clarify and understand the origin of the
energy ordering and splitting. In a recent paper,15 we have
proposed a frozen-orbital-analysis (FZOA) method to this end.
Therein, we have applied it only to the t1u f t2g excited states
of MoF6 to show its predictive capabilities. Here, the FZOA
method is applied systematically to all valence excitations of
MoF6. We also examine, within this method, the valence ef
e excitation of MoOF4. The FZOA method appears to be useful
for understanding the chemical and physical meanings of the
excitation levels.
In section II, we give technical details of SCF and SAC/

SAC-CI calculations for MoF6 and MoOF4. The used geom-
etries, basis sets, MO active space, and some principal features
of the SAC-CI theory are briefly addressed. Section III deals
with results and discussions of the ground-state electronic
structures and of the excitation energies for MoF6 (subsections
A and B) and for MoOF4 (subsections C and D). In section
IV, we give concluding remarks and a summary of the present
work.

II. Computational Details

Geometries of MoF6 and MoOF4 are held at their regular
octahedron and square-pyramidal configurations, respectively.
Experimental data are used for bond and angle parameters. In
MoF6, the Mo-F bond length is set to 1.82 Å.16 In MoOF4,
the Mo-F and Mo-O bond lengths are set to 1.836 and 1.650
Å, respectively.17 The O-Mo-F and F-Mo-F angles are set
to 103.8° and 86.7°, respectively.16,17
The Gaussian basis set used for the Mo atom is the

(16s10p7d)/[6s4p3d] set of Huzinaga18 augmented with two p
(úp ) 0.081, 0.026) functions18 to represent the 5p orbital and
two s (ús ) 0.012 01, 0.005 856) and two p (úp ) 0.011 04,
0.005 455) Rydberg functions.19 For fluorine, we use the
(10s7p)/[3s2p] set of Huzinaga18 augmented with two d (úd )
3.559, 0.682) polarization functions18 and one s (ús ) 0.036)
and two p (úp ) 0.074, 0.0029) Rydberg functions.20 For
oxygen, we use the (9s5p)/[4s2p] set of Huzinage-Dunning21
augmented with two d (úd ) 2.704, 0.535) polarization
functions,18 one s (ús ) 0.059) and one p (úp ) 0.059) diffuse
functions.20

The all-electron SCF wave function for the ground state is
calculated by using the program system HONDO8.22 Electron
correlations in the singlet ground and excited states are taken
into account by the SAC/SAC-CI theory.12,13 The active spaces
in the SAC-CI calculations involve the 18 and 15 higher-energy
occupied molecular orbitals (MOs) and the 127 and 109 lower-
energy unoccupied MOs of MoF6 and MoOF4, respectively. The
43 and 36 higher-energy virtual MOs of MoF6 and MoOF4,
respectively, are neglected. The active occupied orbitals are
mainly composed of the 4d atomic orbitals (AOs) of Mo and
the 2p AOs of F or O.
In the SAC-CI calculations, all single-excitation (SE) opera-

tors have been included in the linked terms. Double-excitation
operators, selected by the second-order perturbation, are added
in the configuration spaces. The double-excitation operators,
whose perturbation energies are larger than 3× 10-5 au, have
been included for the ground-state calculations. After selection,
the dimensions of the single- and double-excitation operators
result in 7314 and 6177 for MoF6 and MoOF4, respectively.
For the excited-state calculations, which have been carried out

within theD2h (MoF6) andC2V (MoOF4) subsets ofOh andC4V
symmetries, respectively, the energy threshold for the config-
uration selection is slightly modified to 4× 10-5 au with respect
to the main configurations (C g 0.1) of the 14 and 15 lower
SE-CI solutions for each irreducible representation. The dimen-
sions for the excited states are from 14 715 to 27 248. In SAC
theory,23 the effect of the simultaneous binary electron scattering
(four-body collisions) is dealt with in the form of the so-called
unlinked term. We include, in the unlinked term, all double-
excitation operators whose coefficients in the single and double
(SD) CI are larger than 1× 10-2. In SAC-CI theory,2,3 it takes
into account the transferable part of the electron correlation
between the ground and excited states. All the SAC-CI
calculations discussed in the present work have been carried
out by using the standard SAC-85 program system.24

III. Results and Discussions

A. SAC-CI Calculations of MoF6: Ground and Excited
States. All valence occupied MOs of MoF6 have dominant
characters of ligand. In this respect, MoF6 may be termed a d0

complex. Occupied 7eg, 7a1g, and 7t1u MOs haveσ character,
whereas 2t2g, 6t1u, 1t2u, and 2t1g MOs have π character.
Unoccupied 3t2g (π) and 9eg (σ) MOs are Mo-F antibonding
and dominantly composed of the 4d AOs of Mo.
A formal charge of+6, according to simple electrostatic

ligand-field theory, should be attributed to Mo in MoF6.
However, the Mo-F bond actually has a large covalent character
owing to the back-donation from ligand to Mo. The net charge
of Mo is indeed calculated to be+1.538 at the SCF level. The
ionicity of the Mo-F bond is further relaxed by inclusion of
the electron correlation, resulting in+1.227 by the SAC method.
An analogous situation is found in the singlet excited states.
Table 1 gives a summary of the present SAC-CI results for

excitation energies, main configurations, oscillator strengths, and
net charges in the excited states below 11 eV. All main
configurations of the excited states except for 51T2g and 41T1g
are single excitations from seven valence MOs having ligand
nonbonding or metal-ligand bonding characters to the 3t2g

LUMO with large amplitude at the 4d AOs of Mo. Both 51T2g
and 41T1g states have 2t1g f 9eg excitation characters. The 9eg

MO also has large amplitude at the 4d AOs of Mo. Thus, these
valence electronic transitions are roughly characterized as
electron-transfer excitations from ligand to metal. In these
excited states, the ionic character of the Mo-F bonds is much
more relaxed than in the ground state. Actually, the calculated
net charge on Mo is reduced from+1.26 to+0.85-+1.11.
In more details, the 2t2g and 7eg MOs have Mo-F π andσ

character, respectively, although the other valence MOs are
ligand nonbonding MOs. Therefore, the charge relaxations in
the excited states of the 2t2g f 3t2g and 7eg f 3t2g excitations
are smaller than those in the other states. Namely, the net
charges on Mo in the former are from+1.00 to+1.11, and
those in the latter from+0.85 to+0.95. However, because of
their excitation nature from the bonding MOs, the geometry
relaxations in the 2t2g f 3t2g and 7eg f 3t2g excited states are
expected to be much greater than those in the other states.
In Oh symmetry, electronic transitions to the singlet T1u states

are dipole-allowed. According to the SAC-CI results, we assign
the three low-energy bands observed at 5.90, 6.54, and 7.12
eV to the lower three dipole-allowed1T1u states, respectively.
Therewith, the energy discrepancies result in only-0.35,+0.08,
and+0.12 eV, respectively. The calculated oscillator strengths
of 0.0243, 0.0945, and 0.3549 agree with the measured
intensities, respectively. These agreements might indicate that
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the geometry relaxations in these states are not so large owing
to the excitations from the nonbonding MOs and do not lead to
great red-shifts of the excitation energies.
Since there should be no1T1u states in the energy region from

7.7 to 10.9 eV, the next two bands experimentally observed at
8.62 and 9.22 eV with very weak intensities have to be assigned
to the forbidden transitions. We have calculated the 2t2gf 3t2g
and 7eg f 3t2g excitations in this energy region. Thus, we
tentatively assign these two bands to the 21Eg (2t2g f 3t2g) and
41T2g (7eg f 3t2g) states, respectively. Since these states are
quadruple-allowed, they have the very weak intensities. Of
course, Jahn-Teller effects and/or the vibronic coupling also
contribute to the intensities of these states. There is only a small
possibility that these electronic transitions at 8.62 and 9.22 eV
bands might be assigned to Rydberg states, which appear at an
energy of more than 11 eV in our calculations.
Finally, in Table 2, we compare the present assignment with

those previously quoted.2,6 The present assignment differs from
them in several respects. In refs 2 and 6, the first weak-intensity
peak was assigned to the dipole-forbidden 2t1g (HOMO)f 3t2g
(LUMO) excitation. The present calculations yield the dipole-
forbidden 2t1g f 3t2g (11A2g, 11T1g, and 11T2g) excited states
lower in energy than the first1T1u (allowed) excited state.
However, if we follow this assignment for the first weak band
(5.9 eV) to one of these dipole-forbidden states, it would result
in the large discrepancies in both energy and intensity for the

successive electronic transitions. For example, the third1T1u
state, which is calculated at 7.2 eV and with the largest oscillator
strength, would have to be assigned to the very weak band at
8.62 eV. This is quite improbable and unreasonable. Thus,
relying on our comprehensive theoretical data, we are naturally
led to assign the three lower bands to the dipole-allowed
transitions to the lower three1T1u states.
As to the two other very weak transitions at 8.62 and 9.22

eV, since we have calculated no allowed excited states from
7.2 up to 10.9 eV, we assign them to the forbidden excited states,
in agreement with the previous studies but with different orbital
origins. The XR study assigned the band at 8.62 eV to the 7a1g

f 3t2g state, of which the excitation energy was calculated to
be 8.42 eV. However, for this1T2g state, the more accurate
SAC-CI calculations yield the excitation energy of 7.75 eV,
which is different by 0.9 eV.
B. Frozen Orbital Analysis of MoF6: Excited-State

Manifold. In the preceding section, we show that the accurate
SAC-CI results for the singlet excited states of MoF6 lead to
the consistent and reasonable assignment of the experimental
spectrum. There exist, however, many more states in the lower
energy region and energetically close to the experimentally
observed ones. These excited states cannot be neglected in
understanding the photochemical behavior and excited-state
dynamics, since internal conversions from the dipole-allowed
to forbidden states occur easily. As shown in Table 1, most of

TABLE 1: Summary for the Ground and Excited State of MoF6

SAC/SAC-CI experimentala

net charge

state
main

configuration
excitation
energy (eV)

oscillator
strength Mo F

excitation
energy (eV) intensity

X1A1g 0.000 +1.267 -0.205
11A2g 2t1gf 3t2g 4.946 forbidden +0.865 -0.144
11T2g 2t1g f 3t2g 5.320 forbidden +0.860 -0.143
11T1g 2t1g f 3t2g 5.340 forbidden +0.860 -0.143
11T2u 7t1u f 3t2g 5.342 forbidden +0.860 -0.143
11T1u 7t1u f 3t2g 5.553 0.0243 +0.854 -0.142 5.90 weak
11A1u 1t2u f 3t2g 5.692 forbidden +0.853 -0.142
11Eu 1t2u f 3t2g 5.693 forbidden +0.852 -0.142
21Eu 7t1u f 3t2g 5.777 forbidden +0.899 -0.150
11A2u 7t1u f 3t2g 5.813 forbidden +0.909 -0.152
21T2u 1t2u f 3t2g 5.919 forbidden +0.886 -0.148
11Eg 2t1g f 3t2g 6.016 forbidden +0.893 -0.149
21T1u 1t2u f 3t2g 6.624 0.0945 +0.894 -0.149 6.54 middle
21A2u 6t1u f 3t2g 6.672 forbidden +0.912 -0.152
31Eu 6t1u f 3t2g 6.733 forbidden +0.913 -0.152
31T2u 6t1u f 3t2g 6.813 forbidden +0.937 -0.156
31T1u 6t1u f 3t2g 7.243 0.3549 +0.957 -0.160 7.12 strong
21T2g 7a1g f 3t2g 7.751 forbidden +0.921 -0.153
21Eg 2t2g f 3t2g 8.908 forbidden +1.066 -0.178 8.62 very weak
31T2g 2t2g f 3t2g 8.930 forbidden +1.064 -0.177
21T1g 2t2g f 3t2g 9.067 forbidden +1.069 -0.178
41T2g 7eg f 3t2g 9.491 forbidden +1.021 -0.170 9.22 very weak
31T1g 7e1g f 3t2g 10.274 forbidden +1.004 -0.167
51T2g 2t1g f 9eg 10.428 forbidden +0.940 -0.157
21A1g 2t2g f 3t2g 10.749 forbidden +1.117 -0.186
41T1g 2t1g f 9eg 10.951 forbidden +0.940 -0.157
aReference 6.

TABLE 2: Comparison between the Previous and Present Assignments

experimenta XR calculationb SAC-CI calculationc

∆E (eV) intensity assign. ∆E (eV) assign. ∆E (eV) intensity assign.

5.90 weak 2t1g f 3t2g 5.87 2t1g f 3t2g 5.55 0.0243 7t1u f 3t2g
6.54 middle 7t1u f 3t2g 6.60 7t1u f 3t2g 6.61 0.0945 1t2u f 3t2g
7.12 strong 1t2u f 3t2g 7.32 6t1u f 3t2g 7.26 0.3549 6t1u f 3t2g
8.62 very weak 2t2g f 3t2g 8.42 7a1g f 3t2g 8.91 forbidden 2t2g f 3t2g
9.22 very weak 4eg f 3t2g 9.33 2t2g f 3t2g 9.50 forbidden 4eg f 3t2g

aReference 6.bReference 2.c Present study.
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these states share the same main configuration between degener-
ate MOs. For example, 11A2g, 11T1g, 11T2g, and 11Eg states all
correspond to the 2t1g (HOMO) f 3t2g (LUMO) (π f π*)
excitation. Furthermore, we realize that only the highest state
splits considerably from the other excited states within the same
nature, except for the 7t1u f 3t2g (σ f π*) excitation. In
particular, within the 2t2gf 3t2g (π f π*) excitation, the highest
state 21A1g is about 1.7 eV higher in energy than the second
highest state 31T2g.
In this section, we try to understand the origin of the energy

orderings and splittings of the excited states within the same
excitation nature. We have recently proposed a simple theoreti-
cal scheme, the FZOA method, to solve this problem.15

First, we briefly explain the splitting scheme in the FZOA
method. InOh symmetry, excitations from cubic to cubic
degenerate MOs lead to four distinct excited states. Table 3
summarizes wave functions and energies for all kinds of states
which arise from excitations between cubic degenerate MOs.
The four distinct states are categorized into one nondegenerate
A state, one quadratic E state, and two cubic T+ and T- states,
respectively. Here, we define (φi, φj, φk) and (φa, φb, φc) as
occupied and unoccupied MOs, respectively, as shown in Figure
1.
In the FZOA method, we write the singlet- and triplet-

excitation energies in the following partitioned form

whereA is the orbital energy difference,B the-J + 2K (-J
for triplet states) term, andC a four-index repulsion integral

term. Explicit formulas for theA, B, andC terms are shown in
Table 3. Note that theC term is the most specific to the
excitation between the degenerate MOs. TheA term, of course,
does not bring any energy splitting for the four states determin-
ing only the absolute value of the excitation energy. TheB
term brings about the energy splitting between (A, E) and (T+,
T-) pairs. TheC term eventually yields the energy splittings
within the individual pairs (A, E) and (T+, T-).
Figure 2 shows the energy levels for the 2t1g f 3t2g, 1t2u f

3t2g, 6t1u f 3t2g, 2t2g f 3t2g, and 7t1u f 3t2g excitations
calculated by the FZOA and the SAC-CI methods. The 6t1u f
3t2g and 7t1u f 3t2g excitations, which have already been
discussed in ref 15, are shown again in order to compare them
with the other excitations. The 2t1g, 1t2u, 6t1u, and 2t2g MOs
haveπ character, whereas the 7t1u MO hasσ character.
Since the FZOA method actually corresponds to SE-CI

calculations within the minimum configuration space [3× 3],
it cannot give quantitatively accurate results. However, we
notice from Figure 2 that the orderings of the four states
calculated by the FZOA method consistently agree with those
by the SAC-CI method, except for the 2t2g f 3t2g excitation.
Even for the 2t2g f 3t2g excitation, the intrapair orderings (i.e.,
between1Eg and 1A1g, and between1T1g and 1T2g states) are
the same as those of the SAC-CI results. For gerade states, the
energy splittings between E and A states are larger than those
between T+ and T- states. On the other hand, the energy
splittings between1Eu and1A1u (or 1A2u) are smaller than those
between1T1u and 1T2u states. These qualitative relationships
for the energy orderings seem to hold in the FZOA results as
well as in the SAC-CI calculations. Thus, the energy orderings

TABLE 3: Excitation Energy and Wave Function of the FZOA Method

statea

gerade ungerage 1∆Eb,c,d 3∆Eb,c,d

category *1 *2 *3 *4 A B C A B C wave functionΨe

A A1g A2g A1u A2u ∆εia -Jia + 2Kia 2{2ai|jb) - (ab|ij )} ∆εia -Jia -2(ab|ij ) 1/x3(Φi
a + Φj

b + Φk
c)

E Eg Eg Eu Eu ∆εia -Jia + 2Kia -{2(ai|jb) - (ab|ij )} ∆εia -Jia (ab|ij ) 1/x2(Φi
a - Φj

b),
1/x6(Φi

a + Φj
b - 2Φk

c)
T+ T2g T1g T2u T1u ∆εia -Jib + 2Kib -{2(bi|ja) - (ab|ij )} ∆εia -Jib -(ab|ij ) 1/x2(Φj

c + Φk
b),

1/x2(Φk
a + Φi

c),
1/x2(Φi

b + Φj
a)

T- T1g T2g T1u T2u ∆εia -Jib + 2Kib -{2(bi|ja) - (ab|ij )} ∆εia -Jib (ab|ij ) 1/x2(Φj
c - Φk

b),
1/x2(Φk

a - Φi
c),

1/x2(Φi
b - Φj

a),

a *1. t1g f t1g, t2g f t2g, t1u f t1u, t2u f t2u excitations; *2. t1g f t2g, t2g f t2g, t1u f t2u, t2u f t1u excitations; *3. t1g f t1u, t2g, f t2u t1u f t1g,
t2u f t2g excitations; *4. t1g f t2u, t2g f t1u, t1u f t2g, t2u f t1g excitations.b ∆εia is the orbital energy difference betweenith andath MOs. c J and
K are the Coulomb and exchange integrals, respectively.d (kl|mn) is a two-electron integral defined by∫∫dτ1 dτ2 φk*(1) φl(1) (1/r12)φm*(2) φn(2).
e Φl

d is a symmetry-adapted configuration state function of the excitation fromφl to φd.

Figure 1. Illustration of the excitation from cubic to cubic degenerate
MOs inOh symmetry. The occupiedφi, φj, andφk MOs are assigned
to the b1g (or b1u), b2g (or b2u), and b3g (or b3u) species ofD2h subgroup
symmetry, respectively. The unoccupiedφa, φb, andφc MOs are also
assigned to the three species ofD2h symmetry, respectively.

∆E) A+ B+ C (1)

Figure 2. Comparison of the excitation energies of the MoF6 calculated
by the FZOA and SAC-CI methods.
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and splittings calculated by the FZOA method are kept in the
accurate SAC-CI calculations.
This in turn allows us to use the much simpler FZOA method

to try to understand the complicated excited states of MoF6.
Table 4 lists the numerical data for the orbital energies and two-
electron integrals appearing in Table 3. The absolute values
of Coulomb integrals are larger than those of the exchange and
four-index two-electron integrals. For excitations from the
σ-character 7t1u MO, the energy difference betweenJia andJib
is dominant to the ordering caused by theB term. The origin
of this large energy difference betweenJia andJib in this case
has been discussed in ref 15 by using electron density. On the
other hand, in the cases ofπ -character MOs, theB term is
determined by the exchange integrals. One finds that the
exchange integrals,Kia andKib, differ from each other by 1
order of magnitude in every cases. The integrals (ai|jb) and
(bi|ja), which are more important than (ab|ij ) integrals for the
energy splittings by theC term, also differ from each other by
1 order of magnitude. Furthermore, the energy orderings of
these integrals are the same. Namely, whenKia < Kib, one finds
(ai|jb) > (bi|ja). Now, these integrals involve the transition
densityφa* (r) φi(r) or φb* (r) φi(r). The transition densities
φj* (r) φb(r) andφj* (r) φa(r) involved in (ai|jb) and (bi|ja) have,
except for the rotation of the coordinate axis, the same
distributions asφa* (r) φi(r) and φb* (r) φi(r), respectively.
Therefore, how the energy orderings of these integrals come
about should be understood by analyzing these transition
densities, which correspond to the spatial distributions of the
overlaps between the two relevant MOs such asφa(r) andφi-
(r).
Figure 3 schematically shows the respective combinations,

φa* (r) φi(r) and φb* (r) φi(r), in the cases of (2t1g, 1t2u, 6t1u,
2t2g, and 7t1u) f 3t2g excitations. We now discuss the case of
the 2t1g MOs as an example. Theφi(r) MO of b1g symmetry
(in D2h subset) has a maximum amplitude on thexy-plane (see

Figure 3). On the other hand,φa(r) andφb(r) MOs of b1u and
b2u symmetries (D2h) have maximum amplitudes on thexy- and
xz-planes, respectively. Therefore, the pair ofφi(r) andφa(r)
has a larger overlap than that ofφi(r) andφb(r). In Figure 3,
we show the overlap difference between the two MOs by using
solid (large) and broken (small) lines, respectively. It turns out
that the combinationsφa*(r) φi(r) andφb*(r) φi(r) have the larger
overlaps for the gerade-gerade and ungerade-gerade pairs,
respectively. This causes the large energy difference between
(ai|jb) and (bi|ja) integrals and further, in turn, the large
difference of the energy splittings between E and A and between
T+ and T-. Since this fact is also at the origin of the large
difference betweenKia and Kib, we formulate the following
general rule for the cases ofπ-character MOs:
“States which split greater lie at higher energy than those

whose splittings are smaller.”
Moreover, since transition densities determine the oscillator

strengths, it turns out that the energetically highest excited state
within the same excitation nature is dipole-allowed. Table 4
also lists the numerical data for the transition dipole moments
of the configuration-state-function basis.〈Φi

a|r|0〉 and〈Φi
b|r|0〉

of the 2t1g f 3t2g and 2t2g f 3t2g excitations always vanish to
zero. In the remaining excitations, 7t1u f 3t2g, 1t2u f 3t2g,
and 6t1u f 3t2g, 〈Φi

b|r|0〉 is nonzero. However, the transition
dipole moments of1T2u states result in zero because of the exact
cancellation between〈Φj

a|r|0〉 and 〈Φi
b|r|0〉.

While Coulomb and exchange integrals are always positive,
(ai|jb) and (bi|ja) four-index integrals are not. For example,
values of (ai|jb) for the 2t1g f 3t2g and 2t2g f 3t2g excitations
turn out to be-0.40 and 1.03, respectively. This difference
brings about the different ordering between A and E states;
namely,1Eg > 1A2g for 2t1g f 3t2g and1A1g > 1Eg for 2t2g f
3t2g. It is easy to explain how the sign of the two-electron
integrals comes about, when we consider the phases of the
relevant transition densities.
Figure 4 shows a schematic illustration for the evaluation of

(ai|jb) integrals. In the upper part (a), the combination ofφa-

Figure 3. Combination of the orbitals of MoF6 for the transition
density. The solid and dotted lines are large and small overlaps between
them, respectively.

Figure 4. Illustration of the calculation of two-electron integrals (ai|jb)
for the 2t2g f 3t2g and 2t1g f 3t2g excitations. Plus and minus signs of
the transition densities are determined by the phases of the two MOs
(a) and those of the integrals by the phases of the two transition densities
(b).
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(r) andφi(r) giving the transition densityφa* (r) φi(r) is depicted.
In the lower part (b), the combination ofφa* (r) φi(r) andφj* (r)
φb(r) leading to (ai|jb) integrals is sketched. Now, since the
integration involves a short-range operatorr12

-1, the sign of the
(ai|jb) is determined by the closest pair of the maximum
amplitudes of the two transition densities. In the case of the
2t1g f 3t2g excitation, the closest pairs are those near thex-axis.
There, the signs of the maximum amplitudes ofφa* (r) φi(r) and
φj* (r) φb(r) are opposite to each other. Therefore, the integral
obtains a negative value. On the other hand, since the maximum
amplitudes ofφa* (r) φi(r) andφj* (r) φb(r) for the 2t2g f 3t2g
excitation are positive, the integral obtains a positive value.
Moreover, since there is no cancellation owing to the opposite
signs, the absolute value of (ai|jb) becomes greater for the 2t1g

f 3t2g excitation than those for the other cases. This is a reason
for the largest energy splitting between the 21A1g and 21Eg states.
The values of the (bi|ja) integral for the 1t2u f 3t2g and 6t1u

f 3t2g excitations are-0.45 and 0.31 eV, respectively. These
different values and signs of the relevant integrals are also
explained in Figure 5, which shows the schematic illustration
for qualitatively evaluating the (bi|ja) integrals. Therein, the
upper (a) and lower (b) parts refer to the (bi|ja) integrals for
1t2u f 3t2g and 6t1u f 3t2g excitations, respectively. The
transition densities,φa*(r) φi(r) andφj*(r) φb(r), shown in Figure
5 have large amplitudes along thex-axis, but there they show
both positive and negative signs. For the 1t2u f 3t2g excitation,
they have opposite signs, and the integral results negative. On
the other hand, since they have same signs for the 6t1u f 3t2g
excitation, the integral results positive.
The T+ and T- states of the 1t2u f 3t2g and 6t1u f 3t2g

excitations appear reversibly as the effect of theC term, as
shown in Table 3. However, on account of the opposite signs
of the (bi|ja) integrals, the energy orderings of the T1u and T2u
states for both excitations become the same; namely, T1u > T2u.
Finally, using the FZOA method, we are able to predict the

energy orderings and splittings of thetriplet states, which are
not calculated by the SAC-CI method in the present study. In
Table 5, the singlet- and triplet-excitation energies of MoF6

estimated by the FZOA method are reported for comparison.
As shown for the singlet states in Figure 2, the FZOA results

of the excited-state energies do not achieve quantitative ac-
curacy. However, as far as the state orderings are of concern,
they seem to reproduce the outcome of more accurate CI
calculations. It is perhaps worthy to note, in Table 5, that all
triplet-excitation energies appear systematically lower than those
corresponding to the singlet states. This is, of course, because
of the lack of the exchange-integral terms for the triplet-
excitation energies in the FZOA expression. An aspect of the
FZOA method closely parallels the well-known Hund’s rule,25

the atomicAufbau principle. However, the FZOA method
further yields that the relative orderings of the triplet states
having the excitation nature are different from those of the
singlet states and the energy splittings appear smaller. This is
because the triplet-excitation energies in the FZOA method do
not include exchange integrals,Kia andKib, and four-index ones,
(ai|jb) and (bi|ja).
The analysis of the excited states of MoF6 performed in this

section, which uses only the symmetries and characters of the
relevant MOs, has led to amicroscopicunderstanding and
rationalization of the state orderings and energy splittings
obtained in much more complicated CI results. The qualitative
relationships found here should be suitable for any systems in
Oh symmetry. Moreover, we may state the following general
rule for any molecules in any symmetries:
“For the singlet-excited states related withπ-character MOs,

the dipole-allowed state is located at the highest leVel and is
greatly split from the other states with the same nature."
C. SAC-CI Calculations of MoOF4: Ground and Excited

States. Table 6 shows orbital energies and characters of
MoOF4. Therein, only valence occupied and lower unoccupied
MOs are reported. All valence occupied MOs have large
amplitudes at the ligand AOs. 10e and 15a1 MOs have, in
particular, larger amplitudes at the 2p AOs of O, whereas other
occupied MOs have larger coefficients at the 2p AOs of F atoms.
On the other hand, unoccupied 3b2, 11e, 20a1, and 8b1 MOs
are mainly composed of the 4d AOs of Mo with the Mo-ligand
antibonding nature.
Table 6 also compares with the symmetries of valence

occupied and two virtual MOs of MoF6. Since MoOF4 (C4V)
is a lower symmetry than MoF6 (Oh), highly degenerate MOs
in the latter split in the former. eg, t2g, t1u, t2u, a1g, and t1g
symmetry elements correspond to those of theC4V as follows:

MoF6 has three more valence occupied MOs than MoOF4.
From the orbital characters, there are only a few cases in which
we can correspond the MOs of MoF6 to those of MoOF4. The
gerade MOs are quite direct as shown in Table 6. On the other
hand, it is difficult to make direct correspondence to 8e and 9e
MOs because of the orbital mixing, although 6t1u, 1t2u, and 7t1u
MOs of MoF6 are related to 8e, 5b1, 9e, and 14a1 MOs of
MoOF4.
Similar to MoF6, the formal charge of+6 attributable to Mo

in MoOF4 is greatly reduced by the chemical bonding and the
electron correlation giving covalent characters to Mo-F and
Mo-O bonds. However, the formal charge on Mo is reduced
in MoOF4 to a minor extent. The net charge on Mo is calculated
to be+2.55 at the SCF level, which, by inclusion of the electron
correlation by the SAC method, is further decreased to+2.33.
This charge is about twice as large as that of MoF6 (+1.27),
which clearly indicates that MoOF4 is more ionic than MoF6.

Figure 5. Illustration of the calculation of two-electron integrals (bi|ja)
for the (a) 1t2u f 3t2g and (b) 6t1u f 3t2g excitations. Plus and minus
signs of the transition densities are determined by the phases of the
two MOs and those of the integrals by the phases of the two transition
densities.

eg ) b1 + a1, t2g ) b2 + e, t1u ) a1 + e

t2u ) b1 + e, a1g ) a1, t1g ) a2 + e
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This is mainly due to different 5s populations of Mo in the two
cases (1.58 and 0.41 for MoF6 and MoOF4, respectively).
Table 7 presents a summary of the SAC-CI results for

excitation energies (up to 11 eV), main configurations, oscillator
strengths, and net charges. Reported are also the available
experimental data of Levason et al.8 All main configurations
of the excited states lower than 10.8 eV are single excitations
to 3b2, 11e, 20a1, and 8b1 virtual MOs, whose amplitudes are
comparatively larger at the 4d AOs of Mo. These electronic
transitions are thus all characterized as electron-transfer excita-
tions from ligand to metal. Since MoOF4 hasC4V symmetry,
transitions to1E and1A1 states are dipole-allowed. According
to the SAC-CI results, we assign the electronic transitions
observed at 4.86 and 5.48 eV to the 11E and 21E states,
respectively. The errors with respect to the experiment are
reasonably small (within 0.3 eV). With respect to the ground
state, these excitations bring large changes of the charges on

oxygen and on fluorine, respectively. Therefore, they may be
described as electron-transfer of Of Mo and F f Mo,
respectively. This assignment parallels that in ref 8, although
there the energy of the first excited state (Of Mo) has been
underestimated by about 1 eV. The calculated intensities for
the excited states of MoOF4 also agree with the experiment.
Thus, the present assignment is more reasonable and reliable.
Although no experimental data are available, we further predict
three strong bands around 6.4, 7.4, and 8.3 eV due to the 31E,
21A1, and 71E states, respectively.
D. Frozen Orbital Analysis of MoOF4: Excited-State

Manifold. In section III.B, we discuss the orderings and
splittings of the excited states of MoF6, which are related to
the excitations between cubic degenerate MOs, by using the
FZOAmethod. Since MoOF4 hasC4V symmetry, which is lower
thanOh of MoF6, the cubic degenerate MOs inOh split to one
nondegenerate and one quadratic degenerate MOs inC4V. For

TABLE 5: Comparison between the Singlet and Triplet Excitation Energies Calculated by the FZOA Method

singlet triplet

main configuration state excitation energy (eV) state excitation energy (eV)

π character
2t1g f 3t2g 1A2g 7.1523 (0.0000) 3Eg 6.7348 (0.0000)

1T1g 7.6600 (0.4121) 3A2g 6.8779 (0.1431)
1T2g 7.7030 (0.6463) 3T2g 7.5632 (0.8284)
1Eg 9.4608 (2.3085) 3T1g 7.6586 (0.9238)

1t2u f 3t2g 1A1u 7.7614 (0.0000) 3Eu 7.6060 (0.0000)
1Eu 7.8028 (0.0414) 3A1u 7.7614 (0.1554)
1T2u 8.3566 (0.4916) 3T2u 8.1154 (0.5094)
1T1u 10.0458 (2.3880) 3T1u 8.2190 (0.6130)

6t1u f 3t2g 1A2u 8.6345 (0.0000) 3A2u 8.4119 (0.0000)
1Eu 8.7005 (0.0660) 3T1u 8.4415 (0.0296)
1T2u 8.7627 (0.1282) 3T2u 8.6047 (0.1928)
1T1u 9.8399 (1.2054) 3Eu 8.6567 (0.2448)

2t2g f 3t2g 1T1g 10.5366 (0.0000) 3A1g 9.2513 (0.0000)
1Eg 10.7188 (0.1822) 3Eg 9.6776 (0.4263)
1T2g 10.7364 (0.1998) 3T1g 10.2508 (0.9995)
1A1g 16.5163 (5.9797) 3T2g 10.5350 (1.2837)

σ character
7t1u f 3t2g 1T2u 7.4230 (0.0000) 3T1u 7.2412 (0.0000)

1T1u 7.9994 (0.5764) 3T2u 7.2504 (0.0092)
1Eu 8.1005 (0.6775) 3A2u 8.0650 (0.8238)
1A2u 8.1776 (0.7546) 3Eu 8.0788 (0.8376)

a Energy differences from the lowest excited states with the same main configurations are shown in parentheses.

TABLE 6: Orbital Energies and Characters of the HF Wave Function for MoOF4 and Correspondence to MoF6
MoOF4

MoF6 symmetry charactera orbital energy (eV)

Occupied Orbitals
7eg 4b1 F (2p)+ Mo (4d);σ -21.8097

13a1 O (2p)+ Mo (4d), F (2p)+ Mo (4d);σ -21.1924
2t2g 2b2 F (2p) (+ Mo (4d));π -20.9615

7e F (2p)+ Mo (4d), O (2p)+ Mo (4d);π -20.6806
7a1g 14a1 F (2p)+ Mo (5s);π -19.2725
6t1u 8e F (2p);σ, π -18.7569
1t2u 5b1 F (2p);π -18.2747
7t1u 9e F (2p);σ, π -18.1666

15a1 O (2p)+ Mo (5s);σ -17.8673
2t1g 1a2 F (2p);π -17.5683

10e O (2p) (+ Mo (5p)), F (2p) (+ Mo (5p));π -16.6165

Unoccupied Orbitals
3t2g 3b2 Mo (4d) (-F (2p));π -2.0920

11e Mo (4d)- O (2p);π -0.9453
9eg 20a1 Mo (4d) (- O (2p)), Mo (4d) (- F (2p));σ 0.8824

8b1 Mo (4d) (- F (2p));σ 2.2101

a + and- denote bonding and antibonding combinations, respectively.
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example, the 3t2g and 2t1gMOs of MoF6 correspond to the (11e,
3b2) and (10e, 1a2) MOs of MoOF4, respectively, as shown in
Figure 6. Therefore, the excited states, A2g, Eg, T1g, and T2g,
derived from the 2t1g f 3t2g excitations also split in MoOF4;
namely, the 10ef 3b2, 1a2 f 3b2, 10ef 11e, and 1a2 f 11e
excitations derive the E, B1 (A1, B1, A2, B2), and E states,
respectively. The excited states corresponding between Oh and
C4V symmetries in Figure 6 are connected with the broken lines.
It is seen therein that two1E states of MoOF4 are derived

from 1 T1g and1 T2g states. There exists, in general, no one-
to-one correspondence between theOh andC4V excited states
because of partial or complete symmetry mixing. For example,
although1A1, 1B2, and 1A2 states derive from1Eg, 1T1g, and
1T2g symmetries, respectively,1B1 and 1E states have 2-fold
origins. Indeed, the1B1 states are connected to both1Eg and
1A2g symmetries, as well as the1E states to both1T1g and1T2g
symmetries. The energy splittings of the 10ef 3b2, 1a2 f
3b2, 10ef 11e, and 1a2 f 11e excitations arise mainly due to
the orbital energy differences. For example, the energy gap of
the two 1E states is approximately given by orbital energy
differences. However, the energy orderings and splittings of
the four states,1A1, 1B1, 1A2, and 1B2, for the 10ef 11e

excitation, cannot be explained by the orbital energy differences.
Then, we apply the FZOA method to the ef e excitations.

Let us define (φi, φj) and (φa, φb) as quadratic degenerate (e
symmetry) occupied and unoccupied MOs, respectively. The
excitation energies for the ef e transitions are also composed
of the three energy terms defined in eq 1 in section III.B. The
B term gives rise to the energy splitting between (A1, B1) and
(A2, B2) pairs. TheC term instead brings about the energy
splitting between A1 and B1 states as well as that between A2

and B2 states.

Figure 7 shows the energy levels for the (10e, 7e, 9e, and
8e)f 11e excitations calculated by the FZOA and the SAC-
CI methods. As noticed for MoF6, the energy ordering of the
four states for the 10ef 11e excitation calculated by the FZOA
method results in the same as that obtained by SAC-CI
calculation. For the 7ef 11e excitation, the intrapair orderings
of (1A1, 1B1) and (1A2, 1B2), which are brought about by theC
term, are the same as the SAC-CI results. Although quite
different orderings appear for the 9ef 11e and 8ef 11e
excitations, the energy splittings are very small compared with
those of the 10ef 11e and 7ef 11e states. The largest energy

TABLE 7: Summary for the Ground and Singlet Excited States of MoOF4
SAC/SAC-CI experimentala

net charge

state main configuration
excitation
energy (eV) oscillator strength Mo O F

excitation
energy (eV)

oscillator
strength

XA1 +2.33 -0.63 -0.43
1E 10ef 3b2 4.659 0.0056 +1.97 -0.32 -0.41 4.86 middle
1B1 1a2 f 3b2 5.410 forbidden +1.92 -0.68 -0.31
1B2 15a1 f 3b2 5.617 forbidden +1.99 -0.36 -0.41
2E 9ef 3b2 5.754 0.0378 +1.88 -0.73 -0.29 5.48 strong
1A2 5b1 f 3b2 5.778 forbidden +1.90 -0.70 -0.30
2A2 10ef 11e 5.959 forbidden +2.10 -0.46 -0.41
2B2 10ef 11e 6.109 forbidden +2.12 -0.44 -0.42
2B1 10ef 11e 6.215 forbidden +2.11 -0.50 -0.40
3E 8ef 3b2 6.398 0.0766 +1.92 -0.70 -0.30
3B2 14a1 f 3b2 6.851 forbidden +1.94 -0.67 -0.32
4E 15a1 f 11e 6.892 0.0002 +2.15 -0.46 -0.42
5E 1a2 f 11e 7.225 0.0005 +1.95 -0.85 -0.28
2A1 10ef 11e 7.339 0.1266 +2.07 -0.58 -0.37
3B1 9ef 11e 7.606 forbidden +1.92 -0.84 -0.27
3A1 9ef 11e 7.660 0.0059 +1.93 -0.83 -0.27
3A2 9ef 11e 7.669 forbidden +1.95 -0.84 -0.28
4B2 9ef 11e 7.681 forbidden +1.96 -0.84 -0.28
6E 5b1 f 11e 8.031 0.0458 +2.01 -0.73 -0.32
7E 7ef 3b2 8.264 0.0722 +2.03 -0.70 -0.33
8E 10ef 20a1 8.404 0.0113 +2.05 -0.52 -0.38
4A1 8ef 11e 8.430 0.0063 +2.02 -0.76 -0.31
5B2 8ef 11e 8.455 forbidden +1.96 -0.79 -0.29
4B1 8ef 11e 8.477 forbidden +1.96 -0.83 -0.28
4A2 8ef 11e 8.501 forbidden +1.95 -0.83 -0.28
6B2 13a1 f 3b2 8.646 forbidden +2.01 -0.62 -0.35
5A1 2b2 f 3b2 8.891 0.0239 +2.02 -0.74 -0.32
5A2 4b1 f 3b2 8.936 forbidden +2.01 -0.72 -0.32
9E 14a1 f 11e 9.053 0.0619 +2.00 -0.82 -0.30
10E 10ef 8b1 9.368 0.0017 +2.02 -0.35 -0.42
6A2 1a2 f 20a1 9.633 forbidden +1.76 -0.87 -0.22
7B2 1a2 f 8b1 9.729 forbidden +1.93 -0.71 -0.30
5B1 7ef 11e 9.993 forbidden +2.10 -0.75 -0.34
11E 9ef 20a1 10.020 0.0001 +1.90 -0.83 -0.27
6A2 7ef 11e 10.195 forbidden +2.11 -0.79 -0.33
6A1 5b1 f 8b1 10.237 0.0194 +1.98 -0.71 -0.32
12E 13a1 f 11e 10.288 0.0006 +2.02 -0.78 -0.31
6B1 5b1 f 20a1 10.316 forbidden +1.77 -0.78 -0.25
8B2 7ef 11e 10.368 forbidden +2.13 -0.77 -0.34
13E 2b2 f 11e 10.477 0.0172 +2.03 -0.80 -0.31
7B1 15a1 f 8b1 10.525 forbidden +2.07 -0.51 -0.39
7A1 7ef 11e 10.576 0.2338 +1.98 -0.71 -0.32
14E 2b2 f 11e 10.835 0.0747 +1.98 -0.77 -0.30
aReference 8.
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gaps belonging to the 9ef 11e and 8ef 11e excitations are
only 0.075 and 0.071 eV, respectively.
As it has been already seen in MoF6, the difference between

Kia andKib is dominant for theB term and that between (ai|jb)
and (bi|ja) for theC term. The following relationships may be
deduced from the data shown in Table 8:Kia > Kib, (ai|jb) >
(bi|ja), and〈Φi

a|r|0〉 > 〈Φi
b|r|0〉. Moreover, values ofKia and

(ai|jb) integrals, for the (8e, 9e)f 11e excitations, are 1 order
of magnitude smaller than those corresponding to the (10e, 7e)
f 11e excitations. How these large energy differences of the
exchange and four-index integrals come about is explained and

rationalized by using the transition densityφa*(r) φi(r), as shown
in section III.B for MoF6.
Figure 8 shows schematic illustrations of theφa* (r) φi(r) and

φb* (r) φj(r) orbital combinations for the (10e, 7e, 9e, and 8e)
f 11e excitations. The (φa, φi) and (φb, φj) MO pairs, which
are b1 and b2 symmetries in theC2V subset, respectively, have
maximum amplitudes on thexz- and yz-planes, respectively.
Sinceφa(r) andφi(r) have a larger overlap than that ofφb(r)
and φi(r), Kia and (ai|jb) integrals are much greater thanKib

and (bi|ja) integrals. Energy differences between the (10e, 7e)
f 11e and (9e, 8e)f 11e excitations are explained by the
bonding characters. Namely, since the 7e and 10e MOs have
π character, the overlaps with the 11e MOs areπ-π types (i.e.,
large). On the other hand, the 8e and 9e MOs actually being
two σ-type and twoπ-type Mo-F bonds, the overlaps with 11e
MO are mixedσ-π types (i.e., small). Small overlaps of the
mixedσ-π type have been also seen in MoF6.

IV. Final Remarks and Summary

In this work, we have applied the SAC/SAC-CI method to
study the electronic structures of MoF6 and MoOF4 in the ground
and excited states. Electron correlations were found important
for accurate descriptions of the ground and excited states. In
contrast to the formal charge (+6) of Mo in these molecules,
the Mo-ligand bonds are found to be much neutralized and to
have large covalent characters in both the ground and excited
states, owing to the back-donation from ligands to Mo. The
ionic character of the Mo-ligand bonds is further relaxed by
including the electron correlations. The ionicity of MoOF4 is
calculated to be greater than that of MoF6. Electronic transitions
of both molecules below 11 eV are all characterized as the
electron-transfer excitations from ligands to Mo, which reduce
the polarities of the Mo-F and Mo-O bonds.
In the present study, we assign five experimental UV peaks

of MoF6 and two of MoOF4. Discrepancies between the
experimental and theoretical excitation energies are, at worst,

Figure 6. Comparison between the 2t1g f 3t2g excitation of the MoF6
and the corresponding excitation of MoOF4. The excitation energies
are calculated by the SAC-CI method.

Figure 7. Comparison of the excitation energies of the MoOF4

calculated by the FZOA and SAC-CI methods.

TABLE 8: MO Integrals Contributing to the Splittings and
Intensities in the (10e, 7e, 8e, and 9e)f 11e Excitations of
MoOF4

1A1, 1B1
1A2, 1B2

main config. Kia (ai|jb) 〈Φi
a|r|0〉 Kib (bi|ja) 〈Φi

b|r|0〉

π character
10ef 11e 2.2091 1.6301 1.6320 0.1460 0.1436 0.0
7ef 11e 1.6818 1.0920 0.5259 0.1295 0.1260 0.0

σ character
8ef 11e 0.1272 0.0585 0.2039 0.0421 0.0091 0.0
9ef 11e 0.1659 0.0532 0.1625 0.0433 0.0094 0.0

Figure 8. Combination of the orbitals of MoOF4 for the transition
density. The solid and dotted lines are large and small overlaps between
them, respectively.
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0.35 and 0.27 eV, respectively. Since the calculated oscillator
strengths are also in qualitative agreement with experiments,
the present assignments are more reasonable and reliable than
the previous ones.
We have further applied the FZOA method to examine and

explain the energy orderings and splittings for the excited states
having the same excitation nature. For MoF6, we discuss the
excitations from cubic to cubic degenerate MOs: namely, (2t1g,
1t2u, 6t1u, and 2t2g) f 3t2g. For MoOF4, the excitations from
quadratic to quadratic degenerate MOs, ef e, are analyzed. In
the excited states of theπ-character MOs, the energy splittings
arise from the energy differences between the exchange integrals
Kia andKib and between the (ai|jb) and (bi|ja) type integrals.
The quite different magnitudes of them are discussed and closely
analyzed by using the transition densityφa* (r) φi(r) or the
overlaps between theφa(r) andφi(r) MOs. The FZOA method,
in this respect, is simple and very useful for understanding the
chemical and physical terms of the meanings of the excitation
levels. Some qualitative relationships established by the FZOA
method may be suitable for any system. In particular, the
following statement is believed to be valid for the singlet-excited
states related with theπ-character MOs:
“The dipole-allowed state is located at the highest energy

leVel and is greatly split from the other states with the same
excitation manifold nature.”
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